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Hilbert’s Nullstellensatz

Wewill be working in k[X1, . . . , Xn], the ring of polynomials in n variables over the

field k. (Any application of the Nullstellensatz requires that k be algebraically closed,

but we will not make this assumption until it becomes necessary.) The set An = An
k of

all n-tuples with components in k is called affine n-space. If S is a set of polynomials in

k[X1, . . . , Xn], then the zero-set of S, that is, the set V = V(S) of all x ∈ An such that

f(x) = 0 for every f ∈ S, is called a variety. (The term “affine variety” is more precise,

but we will use the short form because we will not be discussing projective varieties in

this section.) Thus a variety is the solution set of simultaneous polynomial equations.

If I is the ideal generated by S, then I consists of all finite linear combinations∑ gifi

with gi ∈ k[X1, . . . , Xn] and fi ∈ S. It follows that V(S) = V(I), so every variety is

the variety of some ideal. Also, we proved that we can make An into a topological space

by taking varieties as the closed sets.

On the other hand, if X is an arbitrary subset of An, we defined the ideal of X as

I(X) = {f ∈ k[X1, . . . , Xn] : f vanishes on X}.

By definition we have:

1. If X ⊆ Y then I(X) ⊇ I(Y ); if S ⊆ T then V(S) ⊇ V(T ).

2. I(V(S)) ⊇ S and V(I(X)) ⊇ X .

3. V(I(V(S))) = V(S) and I(V(I(X))) = I(X).

4. I(∅) = k[X1, . . . , Xn].

5. If k is an infinite field, then I(An) = {0}.

6. If a = (a1, . . . , an) ∈ An, then I({a}) = 〈X1 − a1, ..., Xn − an〉.

Let us prove 5: Property (5) holds for n = 1 since a nonconstant polynomial in one

variable has only finitely many zeros. Thus f 6= 0 implies that f 6∈ I(A1). If n > 1, let

f = arX
r
1 + . . . + a1X1 + a0 where the ai are polynomials in X2, . . . , Xn and ar 6= 0.

By the induction hypothesis, there is a point (x2, . . . , xn) at which ar does not vanish.

Fixing this point, we can regard f as a polynomial in X1, which cannot possibly vanish

at all x1 ∈ k. Thus f 6∈ I(An).

To prove (6), note that the right side is contained in the left side becauseXi− ai is 0

whenXi = ai. Also, the result holds for n = 1 by the remainder theorem. Thus assume
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n > 1 and let f = brX
r
1 + . . . + b1X1 + b0 ∈ I({a}), where the bi are polynomials in

X2, . . . , Xn and br 6= 0. By the division algorithm, we have

f = (X1 − a1)g(X1, . . . , Xn) + h(X2, . . . , Xn)

and hmust vanish at (a2, . . . , an). By the induction hypothesis, h ∈ 〈X2−a2, . . . , Xn−

an〉, hence f ∈ 〈X1 − a1, . . . , Xn − an〉.

Irreducible algebraic sets

A variety is said to be reducible if it can be expressed as the union of two proper

subvarieties; otherwise the variety is irreducible.

Problem 1: Assume that I(V ) is not prime, and let f1f2 ∈ I(V ) with f1, f2 6∈ I(V ).

If x ∈ V , then x 6∈ V(f1) implies x ∈ V(f2). Similarly, x 6∈ V(f1) implies x ∈ V(f2).

Proof If x ∈ V and f1(x) 6= 0, then f2(x) must be 0 since f1f2 ∈ I(V ); the result

follows.

Problem 2: Show that V is reducible if I(V ) is not prime.

Proof By Problem 1, V ⊆ V(f1) ∪ V(f2). Thus

V = (V ∩ V(f1)) ∪ (V ∩ V(f2)) = V1 ∪ V2.

By Problem 1, since f1 6∈ I(V ), there exists x ∈ V such that f1(x) 6= 0. Thus x 6∈ V1,

so V1 ( V ; similarly, V2 ( V .

Problem 3: If V andW are varieties with V ⊂ W , then I(V ) ) I(W ).

Proof V ( W implies I(V ) ⊇ I(W ). If I(V ) = I(W ), let V = V(S), W = V(T ).

Then I(V(S)) = I(V(T )), and by applying V to both sides, we have V = W .

Problem 4: Assume that V = V1 ∪ V2, with V1, V2 ( V . By Problem 3, we can

choose fi ∈ I(Vi) with fi 6∈ I(V ). Show that f1f2 ∈ I(V ), so I(V ) is not a prime ideal.

Proof Let x ∈ V ; if f1(x) 6= 0, then since f1 ∈ I(V1), we have x 6∈ V1. But then

x ∈ V2, and therefore f2(x) = 0 (since f2 ∈ I(V2). Thus f1f2 = 0 on V , so f1f2 ∈ I(V ).

Proposition: Any variety in kn is the union of finitely many irreducible subvarieties.

Moreover, this decomposition is unique “assuming that we discard any subvariety that

is contained in another one”.
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Proof First, let V be reducible variety. Then V is the union of proper subvarieties V1 and

V2. If V1 is reducible, then it too is the union of proper subvarieties. This decomposition

process must terminate in a finite number of steps, for otherwise by Problems 1-4, there

would be a strictly increasing infinite sequence of ideals, contradicting the fact that

k[X1, . . . , Xn] is Noetherian. Now, if V = ⋃
i Vi = ⋃

jWj , then

Vi = Vi
⋂(⋃

j

Wj

)
=
⋃
j

(Vi ∩Wj).

So by irreducibility, Vi = Vi∩Wj for some j. Thus Vi ⊆ Wj , and similarlyWj ⊆ Vk for

some k. But then Vi ⊆ Vk, hence i = k (otherwise we would have discarded Vi). Thus

each Vi can be paired with a correspondingWj , and vice versa.

Warmup: Assume that k is algebraically closed. Suppose that An is covered by

open sets An\V(Ii) in the Zariski topology. Let I is the ideal generated by the Ii, so

that I = ∑
Ii, the set of all finite sums xi1 + . . . + xir with xij ∈ Iij . Show that 1 ∈ I .

Furthermore, Show that An is compact in the Zariski topology.

Recall that the Hilbert Basis Theorem states: If R is a Noetherian ring, then

R[X1, . . . , Xn] is also Noetherian. It follows that every variety is the intersection of

finitely many hypersurfaces (zero-sets of single polynomials). In fact, if V = V(I) is a

variety, then I has finitelymany generators, namely f1, . . . , fr. But thenV = ⋂r
i=1 V(fi).

The Nullstellensatz

We have observed that every variety V defines an ideal I(V ) and every ideal I

defines a variety V(I). Moreover, if I(V1) = I(V2), then V1 = V2. But it is entirely

possible for many ideals to define the same variety. For example, the ideals 〈f〉 and

〈fm〉 need not coincide, but their zero-sets are identical. A variety V is, by definition,

always expressible asV(S) for some collection S of polynomials, but an ideal I need not

be of the special form I(X). Hilbert’s Nullstellensatz says that if two ideals define the

same variety, then, informally, the ideals are the same “up to powers”. More precisely,

if g belongs to one of the ideals, then gr belongs to the other ideal for some positive

integer r. Thus the only factor preventing a one-to-one correspondence between ideals

and varieties is that a polynomial can be raised to a power without affecting its zero-set.

In this section we collect some results needed for the proof of the Nullstellensatz. We

begin by showing that each point of An determines a maximal ideal.
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Proposition: If a = (a1, . . . , an) ∈ An, then I = I({a}) = 〈X1−a1, . . . , Xn−an〉

is a maximal ideal.

Proof Suppose that I is properly contained in the ideal J , with f ∈ J\I . Apply the

division algorithm n times to get

f = f1(X1 − a1) + f2(X2 − a2) + . . .+ fn(Xn − an) + r

where f1, f2, . . . , fn ∈ k[X1, . . . , Xn], r ∈ k. Note that r cannot be 0 since f 6∈ I . But

f ∈ J , so by solving the above equation for r we have r ∈ J , hence 1 = (1/r)r ∈ J .

Consequently, J = k[X1, . . . , Xn].

Recall that the radical of an ideal I (in any commutative ring R) is the set of all

elements f ∈ R such that f r ∈ I for some positive integer r. It is clear, if f r and gs

belong to I , then by the binomial theorem, (f + g)r+s−1 ∈ I , and it follows that
√
I is

an ideal. Let us introduce the following proposition:

Proposition: If I is any ideal of k[X1, . . . , Xn], then
√
I ⊆ I(V(I)).

Proof If f ∈
√
I , then f r ∈ I for some positive integer r. But then f r vanishes on

V(I), hence so does f . Therefore f ∈ I(V(I)).

Remark: The Nullstellensatz states that I(V(I)) =
√
I , and the hard part is to

prove that I(V(I)) ⊆
√
I . The technique is known as the “Rabinowitsch trick”, and it is

indeed very clever.

The Nullstellensatz: Equivalent Versions

We are now in position to establish the equivalence of several versions of the

Nullstellensatz.

Theorem: For any field k and any positive integer n, the following statements are

equivalent.

1. Maximal Ideal Theorem: The maximal ideals of k[X1, . . . , Xn] are the ideals of

the form 〈X1−a1, . . . , Xn−an〉, a1, . . . , an ∈ k. Thus maximal ideals correspond

to points.

2. Weak Nullstellensatz: If I is an ideal of k[X1, . . . , Xn] and V(I) = ∅, then

I = k[X1, . . . , Xn]. Equivalently, if I is a proper ideal, then V(I) is not empty.

3. Nullstellensatz: If I is an ideal of k[X1, . . . , Xn], then I(V(I)) =
√
I
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4. k is algebraically closed.

Proof (1) implies (2): Let I be a proper ideal, and let J be a maximal ideal containing

I . It follows that V(J) ⊆ V(I), so it suffices to show that V(J) is not empty. By (1),

J has the form 〈X1 − a1, . . . , Xn − an〉. But then a = (a1, . . . , an) ∈ V(J). [In fact

V(J) = {a}.]

(2) implies (3): This was done in previous section.

(3) implies (2): We use the fact that the radical of an ideal I is the intersection

of all prime ideals containing I . Let I be a proper ideal of k[X1, . . . , Xn]. Then I is

contained in a maximal, hence prime ideal P . Consequently,
√
I is also contained in P ,

hence
√
I is a proper ideal. By (3), I(V(I)) is a proper ideal. But if V(I) = ∅, then

I(V(I)) =
√
I = k[X1, . . . , Xn], a contradiction.

(2) implies (1): If I is a maximal ideal, then by (2) there is a point a = (a1, . . . , an) ∈

V(I). Thus every f ∈ I vanishes at a, in other words, I ⊆ I({a}). But 〈X1 −

a1, . . . , Xn − an〉 = I({a}); to see this, decompose f ∈ I({a}). Therefore the maximal

ideal I is contained in the maximal ideal 〈X1 − a1, . . . , Xn − an〉, and it follows that

I = 〈X1 − a1, . . . , Xn − an〉.

(4) implies (1): Let I be amaximal ideal ofk[X1, . . . , Xn], and letK = k[X1, . . . , Xn]/I ,

a field containing an isomorphic copy of k via c → c + I, c ∈ k. Consequently, K is

a finite extension of k, so by (4), K = k. But then Xi + I = ai + I for some

ai ∈ k, i = 1, . . . , n. Therefore Xi − ai is zero in k[X1, . . . , Xn]/I , in other words,

Xi − ai ∈ I . Thus, I ⊇ 〈X1 − a1, . . . , Xn − an〉, and we must have equality.

(1) implies (4): Let f be a nonconstant polynomial in k[X1] with no root in k. We

can regard f is a polynomial in n variables with no root in An. Let I be a maximal ideal

containing the proper ideal 〈f〉. By (1), I is of the form 〈X1−a1, . . . , Xn−an〉 = I({a})

for some a = (a1, . . . , an) ∈ An. Therefore f vanishes at a, a contradiction.

Corollary 1: If the ideals I and J define the same variety and a polynomial g

belongs to one of the ideals, then some power of g belongs to the other ideal.

Proof If V(I) = V(J), then by the Nullstellensatz,
√
I =
√
J . If g ∈ I ⊆

√
I , then

gr ∈ J for some positive integer r.

Corollary 2: The maps V → I(V ) and I → V(I) set up a one-to-one correspon-
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dence between varieties and radical ideals.

Proof We know that V(I(V )) = V . By the Nullstellensatz, I(V(I)) =
√
I = I for

radical ideals. It remains to prove that for any variety V , I(V ) is a radical ideal. If

f r ∈ I(V ), then f r, hence f , vanishes on V , so f ∈ I(V ).

Corollary 3: Let f1, . . . , fr, g ∈ k[X1, . . . , Xn], and assume that g vanishes wher-

ever the fi all vanish. Then there are polynomials h1, . . . , hr ∈ k[X1, . . . , Xn] and a

positive integer s such that gs = h1f1 + . . .+ hrfr.

Proof Let I be the ideal generated by f1, . . . , fr. Then V(I) is the set of points at

which all fi vanish, so that I(V(I)) is the set of polynomials that vanish wherever all fi
vanish. Thus g belongs to I(V(I)), which is

√
I by the Nullstellensatz. Consequently,

for some positive integer s, we have gs ∈ I , and the result follows.

Aside on commutative algebra: Let B be a subring of A.

A is finitely generated over (or finitely generated as a B- algebra) if there are

finitely many elements a1, . . . , an such that A = B[a1, . . . , an].

A is a finite B-algebra if there are finitely many elements a1, . . . , an with A =

Ba1 + . . .+Ban.

Example: The polynomial ring k[X1, . . . , Xn] finitely generated k-algebra, but not a

finite k-algebra.

The Coordinate Ring of a Variety

Throughout this section V denotes an affine variety in An
k . Recall, a polynomial

function on V is a map f : V → k such that there is a polynomial F ∈ k[X1, . . . , Xn]

with f(P ) = F (P ) for all P ∈ V .

Remark: The polynomial F is not uniquely determined by the values it takes on V .

In particular, for F and G are elements in k[X1, . . . , Xn] we have

F �V = G �V⇐⇒ (F −G) �V = 0⇐⇒ F −G ∈ I(V ).

The coordinate ring of V is defined by

k[V ] := k[X1, . . . , Xn]/I(V ).
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From the above remarks we can make the following identification:

k[V ] = {f : f : V → k is a polynomial function}.

It follows that

V is irreducible⇐⇒ k[V ] is an integral domain.

Note that the coordinate functions X1, . . . , Xn generate k[V ], which explains the

terminology “coordinate ring”. In previous section we studied the relationship between

the subsets of An
k and the ideals in the coordinate ring k[An

k ] = k[X1, . . . , Xn]. The

ring k[V ] plays the same role for V that k[X1, . . . , Xn] plays for An
k . In particular, there

is a correspondence between the closed sets W contained in V and the ideals of k[V ].

To describe this relationship, first note that the projection π : k[X1, . . . , Xn]→ k[V ] =

k[X1, . . . , Xn]/I(V ) induces a bĳection

{ideals J ⊆ k[X1, . . . , Xn] : J ⊇ I(V )} 1:1←→ {ideals J ′ ⊆ k[V ]},

defined by J 7→ J/I(V ), with inverse map J ′ 7→ π−1(J ′). This mapping preserves

radical ideals, prime ideals and maximal ideals. Hence, we have the following corre-

spondences:

{radical ideals J ′ ⊆ k[V ]} 1:1←→ {closed setsW ⊆ V }

⊆ ⊆

{prime ideals J ′ ⊆ k[V ]} 1:1←→ {irreducible setsW ⊆ V }

⊆ ⊆

{maximal ideals J ′ ⊆ k[V ]} 1:1←→ {points of V }
Here we have been talking about closed sets of V in the sense of the topology induced

by the Zariski topology on An
k . This result shows that this is the same as the topology

defined by taking the closed sets of V to be sets of the form V(J), where J is a radical

ideal in k[V ].

We will now discuss a further important characteristic property of coordinate rings.

An algebra A is reduced if A contains no non-zero nilpotent elements, i.e., for

x ∈ A, if xn = 0 for some n > 1, then x = 0.

The algebra k[X1, . . . , Xn]/I is reduced if and only if I is a radical ideal, and so,

since I(V ) is a radical ideal, the coordinate ring is a reduced algebra. By construction,

the coordinate ring k[V ] of an affine variety V is a finitely generated k-algebra. These
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properties characterize coordinate rings of varieties, in the sense that, given any finitely

generated reduced k-algebra A, we can construct a corresponding algebraic variety as

follows. By choosing generators a1, . . . , an we can write A = k[a1, . . . , an], and we

have a surjective homomorphism

π : k[X1, . . . , Xn]→ A = k[a1, . . . , an], Xi 7→ ai.

Let I = ker(π). Then V = V(I) is a variety which is irreducible if and only if A is

an integral domain. Since A is reduced, I is a radical ideal, so I(V ) = I , and so by

construction A = k[V ].

Example For the usual parabola

C0 = {(X, Y ) ∈ A2
k : Y −X2 = 0}

we have

k[C0] = k[X, Y ]/〈Y −X2〉 ∼= k[X] ∼= k[A1
k].

For the semi-cubical parabola, given by

C1 = {(X, Y ) ∈ A2
k : Y 2 −X3 = 0}

we have

k[C1] = k[X, Y ]/〈Y 2 −X3〉.

Notice that k[C1] is not a UFD. As sets, there are bĳections between each of C0 and

C1 and A1
k, since each curve has a rational parametrization, given by t 7→ (t, t2) and

t 7→ (t2, t3) respectively However, as algebraic varieties C0 and C1 behave differently.

Polynomial Maps

We now consider maps between algebraic sets. Throughout this section V ⊆ An
k

and W ⊆ Am
k are closed sets, and Xi, for 1 ≤ i ≤ n, and Yi, for 1 ≤ j ≤ m, are the

coordinate functions on An
k and Am

k respectively.

Amap f : V → W is called apolynomial map if there are polynomialsF1, . . . , Fm ∈

k[X1, . . . , Xn] such that

f(P ) = (F1(P ), . . . , Fm(P )) ∈ Am
k

for all points P ∈ V .

Proposition: LetY1, . . . , Ym be the coordinate functions onAm
k . Amap f : V → W
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is a polynomial map if and only if fj := Yj ◦ f ∈ k[V ] for j = 1, . . . ,m.

Proof Composing f with Yj gives the projection onto the j-ih coordinate:

V W ⊆ Am
k

A1
k

f

fj
Yj

Let fj = Yj ◦ f . Then if f is a polynomial map we have fj(P ) = Fj(P ) for some

Fj ∈ k[X1, . . . , Xn]. Thus fj is a polynomial map, and hence fj ∈ k[V ].

On the other hand, if fj = Yj ◦ f is a polynomial map for every j, then by definition

there are polynomials F1, . . . , Fm ∈ k[X1, . . . , Xn] with

f(P ) = (F1(P ), . . . , Fm(P )) ∈ Am
k

for all P ∈ V .

Remark: The above proposition shows that any polynomial map f : V → W can

be written in the form f = (f1, . . . , fm) with f1, . . . , fm ∈ k[V ].

Proposition: A polynomial map f : V → W is continuous in the Zariski topology.

Proof We must show that if Z ⊆ W is closed then f−1(Z) is also closed. But this is

clear, since if = {h1 = . . . = hr = 0} then f−1(Z) = {h1 ◦ f = . . . = hr ◦ f = 0}, and

so is also closed.

Example 1: Consider the two curves

C0 = {(X, Y ) ∈ A2
k : Y −X2 = 0},

C1 = {(X, Y ) ∈ A2
k : Y 2 −X3 = 0}.

The map from A1
k to the parabola

f : A1
k → C0, t 7→ (t, t2),

and the map

f : A1
k → C1, t 7→ (t2, t3),

are both bĳective polynomial maps.

Example 2: If V ⊆ An
k ,W ⊆ An

k and X ⊆ Al
k are algebraic sets, and f : V → W
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and g : W → X are polynomial maps, then g ◦ f : V → X is also a polynomial map.

This follows immediately from the fact that the composition of a polynomial with a

polynomial is again a polynomial.

Now let f : V → W be a polynomial map. For g ∈ k[W ] we define f ∗(g) := g ◦ f :

V W

A1
k

f

f ∗(g) g

Since g is a polynomial function, g ◦ f is also a polynomial function. Thus we have a

map

f ∗ : k[W ] −→ k[V ],

g 7−→ f ∗(g) := g ◦ f.
If f : V → W , g : W → X are polynomial maps, then

(g ◦ f)∗ = f ∗ ◦ g∗ : k[X] −→ k[V ].

This follows immediately from the fact that for h ∈ k[X] we have

(g ◦ f)∗(h) = h ◦ (g ◦ f) = (h ◦ g) ◦ f = g∗(h) ◦ f = f ∗(g∗(h)).

The map f ∗ is a ring homomorphism, since we have

f ∗(g1 + g2) = (g1 + g2) ◦ f = g1 ◦ f + g2 ◦ f = f ∗(g1) + f ∗(g2),

f ∗(g1 · g2) = (g1 · g2) ◦ f = g1 ◦ f · g2 ◦ f = f ∗(g1) · f ∗(g2).
For any constant c ∈ k we have f ∗(c) = c, so f ∗ is also a k-algebra homomorphism.

Thus every polynomial map f : V → W gives rise to a k-algebra homomorphism

f ∗ : k[W ]→ k[V ]. The next theorem says that this procedure has an inverse.

Proposition: If ϕ : k[W ] → k[V ] is a k-algebra homomorphism, then there exists

a unique polynomial map f : V → W such that ϕ = f ∗.

Proof Exercise.

In fact, There is a bĳection:
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 polynomial maps

f : V → W

 1:1←→

 k − algebra homomorphisms

ϕ : k[W ]→ k[V ]


f 7−→ f ∗

A polynomial map f : V → W is an isomorphism if there is a polynomial map

g : W → V such that f ◦ g = idW and g ◦ f = idV .

Proposition: A polynomial map f : V → W is an isomorphism of varieties if and

only if f ∗ : k[W ]→ k[V ] is an isomorphism of k-algebras.

Proof This follows from the fact that (f ◦ g)∗ = g∗ ◦ f ∗.

Example 1: Let A = [αij] be an invertible (n × n) matrix. Then the linear forms

yi =
n∑
j=1

αijxj define a bĳective polynomial map

f = (y1, . . . , yn) : An
k → An

k .

Example 2: Consider the parabolaC0 = {y−x2 = 0} inA2
k and the parametrization

f : A1
k −→ C0,

t 7−→ (t, t2).

The projection p : A2
k −→ A1

k to the first coordinate, restricted to C0, gives an inverse

map

p �C0= g : C0 −→ A1
k,

(x, y) 7−→ x.

Thus f is an isomorphism. We can also see this by considering the map f ∗ : k[C0] →

k[A1
k], since

f ∗ : k[C0] ∼= k[x] −→ k[A1
k] = k[t],

x 7−→ t,

is an isomorphism.

Example 3: A different kind of behavior can be observed in the case of the semi-

cubical parabola, C1 = {(x, y) : y2 = x3}. Specifically, the map

f : A1
k −→ C1,

t 7−→ (t2, t3),
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is a bĳection, but the image f ∗(k[C1]) ⊆ k[A1
k] = k[t] is generated by f ∗(x) = t2 and

f ∗(y) = t3, and so f ∗(k[C1]) 6= k[t], and thus f is not an isomorphism. Though f is a

bĳection, the inverse map

g : C1 −→ A1
k,

g(x, y) =

 y/x, if (x, y) 6= (0, 0)

0, if (x, y) = (0, 0)
is not a polynomial map.

Projective Varieties

In this chapter we introduce projective varieties and investigate morphisms between

them.

Projective Space

Let V be a finite dimensional vector space over k. We consider the following

equivalence relation on V \{0}:

u ∼ v ⇐⇒ there exists λ ∈ k∗ with u = λv.

The projective space associated to V is defined by

P(V ) := V \{0}/ ∼ .

The dimension of P(V ) is defined by dimP(V ) := dim V − 1.

Two vectors are equivalent if and only if they span the same line in V , so geometri-

cally, the projective space space associated to V is the set of all lines through the origin

in V . In particular, taking V = kn+1, we define

Pn := Pnk := P(kn+1).

Example 1: The space P1
R = P(R2) is homeomorphic to S1, as shown in Figure 1.

Example 2: The real projective plane has a decomposition

P2
R := P(R3) = R2 ∪ P1(R).

Under this decomposition R2 corresponds to the set of lines that do not lie in the (x, y)-

plane, and P1(R) corresponds to the set of lines in the (x, y)-plane, as in Figure 2.
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Figure 1: The real projective line P1
R

Figure 2: Decomposition of real projective space P2
R

In this section we will denote the residue class map as follows:

π : V \{0} −→ P(V ).

For the special case P(V ) = Pnk , we use the notation

(x0 : . . . : xn) := π((x0, . . . , xn)),

andwe call (x0 : . . . : xn) the homogeneous coordinates of the point= π((x0, . . . , xn)) ∈

Pnk . These are well defined only up to multiplication by a common scalar. Nevertheless,

we will see that we can “compute” with them.

In the above example we saw how P2
R decomposes into a union of an affine and

a projective part. In fact, any projective space can be decomposed in a similar way

into an affine subspace and a projective subspace of smaller dimension. For Pnk such a

decomposition is given by setting

Ul := {(x0 : . . . : xn) ∈ Pnk : xl 6= 0},

Hl := {(x0 : . . . : xn) ∈ Pnk : xl = 0}.

The spaceHl can be identified with Pn−1
k , and Ul can be identified withAn

k , for example,
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by the mutually inverse maps

il : An
k −→ Ul,

(x1, . . . , xn) 7−→ (x1 : . . . : xl−1 : 1 : xl+1 : . . . : xn),
and

jl : Ul −→ An
k ,

(x0 : . . . : xl−1 : xl : xl+1 : . . . : xn) 7−→ (x0

xl
, . . . ,

xl−1

xl
,
xl+1

xl
, . . . ,

xn
xl

).

This gives us a decomposition

Pnk = Ul ∪Hl = An
k ∪ Pn−1

k .

Remark: Generally we fix the value of l (usually l = 0 or n), and refer to Ul as the

affine part of Pnk and to Hl as the hyperplane at infinity. Points in Hl are called “points

at infinity”. Whilst this particular decomposition into an affine and a projective piece is

conventional, in fact any projective hyperplane can be taken in Pnk , and the complement

will always be an affine space.

A projective subspace of P(V ) is a subset of the form π(W\{0}), whereW ⊆ V

is a linear subspace and π is the residue class map. We write P(W ) ⊆ P(V ).

A projective subspace is itself naturally a projective space. If dimW = dimV − 1,

then we call P(W ) a hyperplane in P(V ). Projective spaces of dimensions 1 and 2 are

called projective lines and projective planes respectively.

Proposition: Let P(W1) and P(W2) be projective subspaces of an n-dimensional

projective space P(V ). If dimP(W1) + dimP(W2) ≥ n, then P(W1) and P(W2)

intersect, i.e. P(W1) ∩ P(W2) 6= ∅.

Proof We have dimW1 + dimW2 ≥ 2(n+ 1) ≥ n+ 2 = dim V + 1. SoW1 andW2

intersect at least in a line.

In particular two lines in the projective plane always intersect. This is in contrast to

the situation in the affine plane, where two lines may be parallel. In projective space the

distinction between the cases of parallel and nonparallel lines no longer exists.

Remark: Any projective space has a covering by affine spaces

Pnk = U0 ∪ U1 ∪ . . . ∪ Un,
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where

Ui := {(x0 : . . . : xn) ∈ Pnk : xi 6= 0}.

Projective Varieties

Wewant to consider the zero sets in projective space of polynomial equations defined

on Pnk . Since the homogeneous coordinates of a point = (x0 : . . . : xn) ∈ Pnk are only

determined up to multiplication by a common scalar, we must make a restriction to

homogeneous polynomials. A polynomial

f(x0, . . . , xn) =
∑

aν0...νnx
ν0
0 . . . xνn

n

is called homogeneous of degree d if all the monomials have the same degree d =

ν0 + . . . + νn. We will also use the word form to refer to homogeneous polynomials,

e.g., linear form, quadratic form, cubic form, etc. If f is homogeneous of degree d,

then we have

f(λx0, . . . , λxn) = λdf(x0, . . . , xn).

In particular, the zero set of f ,

V(f) := {(x0, . . . , xn) ∈ Pnk : f(x0, . . . , xn) = 0} ⊆ Pnk ,

is well defined.

A projective variety is a subset V ⊆ Pnk such that there is a set of homogeneous

polynomials T ⊆ k[x0, . . . , xn] with

V = {P ∈ Pnk : f(P ) = 0 for all f ∈ T}.

As in the affine case, we may assume that has only finitely many elements. We now

give a few examples of projective varieties.

Example 1: We have already seen the projective subvariety of Pnk given by the

hyperplane at infinity,

Hn = {(x0 : . . . : xn) ∈ Pnk : xn = 0}.

Example 2: Consider the map

ϕ : P1
k −→ P3

k,

ϕ(t0 : t1) 7−→ (t30 : t20t1 : t0t21 : t31),
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The image := ϕ(P1
k) is a projective variety, given by

C =

(x0, x1, x2, x3) ∈ P3
k : rank

 x0 x1 x2

x1 x2 x3

 ≤ 1

.
This means that is the intersection of three quadrics C = Q1 ∩Q2 ∩Q3, where

Q1 = {(x0 : x1 : x2 : x3) ∈ P3
k : x0x2 − x2

1 = 0},

Q2 = {(x0 : x1 : x2 : x3) ∈ P3
k : x0x3 − x1x2 = 0},

Q3 = {(x0 : x1 : x2 : x3) ∈ P3
k : x1x3 − x2

2 = 0}.
The curve cannot be defined by only two quadratic equations. On the other hand, we

have C = Q1 ∩ F , where

F := {(x0 : x1 : x2 : x3) ∈ P3
k : x0x

2
3 − 2x1x2x3 + x3

2 = 0},

that is, the quadric Q1 and the cubic F meet along the curve C. The curve is called the

(projective) rational normal curve of degree 3.

More about the projective algebraic sets

Recall, a projective algebraic subset of Pnk is the common zero set of a collection of

homogeneous polynomials in k[x0, . . . , xn].

Let {Fλ}λ∈Λ ⊆ k[x0, . . . , xn] be a collection of homogeneous polynomials. The

affine algebraic set V = V({Fλ}λ∈Λ) ⊆ An+1
k is cone-shaped, i.e., ∀p ∈ V , the line

through p and the origin is in V .

Example 1: (Linear subspaces). SayW ⊆ kn+1 is a sub-vector space. Then

P(W ) = one-dimensional subspaces ofW = P(kn+1) = Pnk .

Note that P(W ) = V(L1, . . . , Lt) ⊆ Pnk , where Li = ∑n
j=0 aijxj are the set of linear

functionals in V ∗ which defineW .

Example 2: (Some special cases). W is one-dimensional=⇒ P(W ) is a point.

W is 2-dimensional=⇒ P(W ) is a line in Pnk .

In general, ifW is (d + 1)-dimensional, then P(W ) is a d-hyperplane in Pnk . IfW has

codimension 1 in V , then V(W ) = P(W ) ⊆ P(V ) = Pnk is called a hyperplane in Pnk .

In fact, every projective algebraic set in Pnk is defined by finitely many homogeneous

equations. Note, as in the affine case,
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V({Fλ}λ∈Λ) = V(〈Fλ〉λ∈Λ) = V
(
any set of (homogeneous) generators for 〈Fλ〉λ∈Λ

)
= V

(√
〈Fλ〉λ∈Λ

)
.

Recall, an ideal I ⊆ k[x0, . . . , xn] is homogeneous if it admits a set of generators

consisting of homogeneous polynomials.

Example: I = 〈x3 − y2, y2 − z, z〉 is homogeneous because I = 〈x3, y2, z〉.

In fact, the projective algebraic sets form the closed sets of a topology on Pnk , the

Zariski topology.

The projective Nullstellensatz

The homogeneous ideal of a projective algebraic set V ⊆ Pnk is the ideal I(V ) ⊆

k[x0, . . . , xn] generated by all homogeneous polynomials which vanish at every point of

V .

Note that, if I is a homogeneous ideal in k[x0, . . . , xn], we can define both an affine

algebraic set V(I) ⊆ kn+1 and a projective algebraic set V(I) ⊆ Pnk . These have the

same radical ideal in k[x0, . . . , xn].

In fact, for any projective algebraic set V ⊆ Pnk , V(I(V )) = V . Moreover, k = k̄

implies the following theorem:

Theorem (Projective Nullstellensatz).

{projective algebraic sets in Pnk} −→


radical homogeneous ideals in

k[x0, . . . , xn] except for

〈x0, . . . , xn〉

 .
We call 〈x0, . . . , xn〉 the irrelevant ideal. In general, the Zariski topology in Pnk restricts

to the Zariski topology in each affine chart:

Pnk ⊇ V = V
(
F1(x0, . . . , xn), . . . , Ft(x0, . . . , xn)

)
⊇ V ∩ Ui = V

(
F1(y0, . . . , 1, . . . , yn), . . . , Ft(y0, . . . , 1, . . . , yn)

)
,
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where the coordinates are given by

Ui −→ kn,

(x0 : . . . : xn) 7−→ (x0

xi
, . . . , î, . . . ,

xn
xi

).

Projective closure

The projective closure of an affine algebraic set V ⊆ An
k is the closure of V in Pnk ,

under the standard chart embedding An
k = U0 ↪→ Pnk .

Example 1:. Consider V = V(xy − 1) ⊆ A2
k:

V = V(xy − 1) = V(xy − z2) ⊆ P2
k.

Look at V ∩ Uz = V .

Look at V ∩ {“line at infinity”}:

V ∩ V(z) = V(xy − z2, z) = V(xy, z) = {(1 : 0 : 0), (0 : 1 : 0)} ⊆ P2
k.

Given a polynomial f ∈ k[x1, . . . , xn], its homogenization is the polynomial F ∈

k[X0, . . . , Xn] obtained as follows: If f has degree d, write

f =
∑

aIx
i1
1 . . . x

in
n = fd + fd−1 + fd−2 + . . .+ f0,

where fi is the homogeneous component of degree i. Then

F = fd +X0fd−1 +X2
0fd−2 + . . .+Xd

0f0.

Caution: Given V = V(f1, . . . , ft) ⊆ kn, the projective closure V in Pnk is not

necessarily defined by the homogenization of the fi. For example:

{(t, t2, t3) : t ∈ k} ⊆ k3 ↪→ P3
k

(t, t2, t3) 7−→ (1 : t : t2 : t3) = ( 1
t3

: 1
t2

: 1
t

: 1),

so it has exactly one point at infinity, (0 : 0 : 0 : 1).

Problems

1. Let f be a polynomial in k[X1, . . . , Xn], and assume that the factorization of f

into irreducibles is f = fn1
1 . . . fnr

r . Show that the decomposition of the variety
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V(f) into irreducible subvarieties is given by V(f) = ⋃r
i=1 I(V(fi)). Moreover,

I(V(f)) = 〈f1 . . . fr〉).

2. Show that there is a one-to-one correspondence between irreducible polynomials

in k[X1, . . . , Xn] and irreducible hypersurfaces in An
k , if polynomials that differ by

a nonzero multiplicative constant are identified.

3. For any collection of subsets Xi of An, show that I(⋃iXi) = ⋂
i I(Xi).

4. Show that every radical ideal I of k[X1, . . . , Xn] is the intersection of finitely many

prime ideals. Moreover, show that the decomposition is unique, subject to the

condition that the prime ideals P are minimal, that is, there is no prime ideal Q

with I ⊆ Q ⊆ P .

5. Suppose thatX is a variety inA2, defined by equations f1(x, y) = . . . = fm(x, y) =

0,m ≥ 2. Let g be the greatest common divisor of the fi. If g is constant, show

that X is a finite set (possibly empty).

6. Show that every variety in A2 except for A2 itself is the union of a finite set and an

algebraic curve.

7. Give an example of two distinct irreducible polynomials in k[X, Y ] with the same

zero set, and explain why this cannot happen if k is algebraically closed.

8. Give an explicit example of the failure of a version of the Nullstellensatz in a

non-algebraically closed field.

9. Let k be algebraically closed field. Show that the setX = {(t, t2, t3) ∈ A3
k : t ∈ k}

is closed in A3
k and find I(X).

10. Consider the subset Y = {(t3, t4, t5) ∈ A3
k : t ∈ k}. Show that Y = V(I), where

I = 〈y2 − xz, yz − x3, z2 − x2y〉 ⊆ k[x, y, z].

11. Find
√
〈y2 + 2xy2 + x2 − x4, x2 − x3〉 in k[x, y]. [Hint.

√
I = I(V(I))]

12. Let ϕ : A1
k → V(y2 − x3) ⊆ A2

k be the morphism given by ϕ(t) = (t2, t3). Show

that ϕ is bĳective, but not an isomorphism.

13. Prove that a single point inRn is an affine variety. Moreover, the union of any finite

number of points in Rn is an affine variety. Give an example of an infinite set of

points in R2 whose union is an affine variety. Justify your answer.

14. Let X = {(m,m3 + 1) ∈ R2 : m ∈ Z}. Show that X is not an affine variety.

15. Consider the infinite family of polynomials f1, f2, f3, . . . with

fi = 5xi + 2021yi+7(i2 + 3)xi+2022y ∈ R[x, y] (where i = 1, 2, 3, . . .).

Prove that there is some integer n so that every fj with j > n can be written as a
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linear combination of f1, f2, f3, . . . , fn. [Hint. the form of the fi is a red herring.

Also, I do not want to know specifically what n is.]


